Dissociative recombination of N2H+ ions with electrons in the temperature range of 80-350 K
Result description
Recombination of N2H+ ions with electrons was studied using a stationary afterglow with a cavity ring-down spectrometer. We probed in situ the time evolutions of number densities of different rotational and vibrational states of recombining N2H+ ions and determined the thermal recombination rate coefficients for N2H+ in the temperature range of 80-350 K. The newly calculated vibrational transition moments of N2H+ are used to explain the different values of recombination rate coefficients obtained in some of the previous studies. No statistically significant dependence of the measured recombination rate coefficient on the buffer gas number density was observed.
Keywords
cavity ringdown spectroscopyproton transfer reactionsstretching vibrations
The result's identifiers
Result code in IS VaVaI
Alternative codes found
RIV/00216208:11320/20:10413880
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Dissociative recombination of N2H+ ions with electrons in the temperature range of 80-350 K
Original language description
Recombination of N2H+ ions with electrons was studied using a stationary afterglow with a cavity ring-down spectrometer. We probed in situ the time evolutions of number densities of different rotational and vibrational states of recombining N2H+ ions and determined the thermal recombination rate coefficients for N2H+ in the temperature range of 80-350 K. The newly calculated vibrational transition moments of N2H+ are used to explain the different values of recombination rate coefficients obtained in some of the previous studies. No statistically significant dependence of the measured recombination rate coefficient on the buffer gas number density was observed.
Czech name
—
Czech description
—
Classification
Type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Volume of the periodical
152
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
024301
UT code for WoS article
000539054700001
EID of the result in the Scopus database
2-s2.0-85077941915
Result type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
OECD FORD
Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Year of implementation
2020