Spectroscopic evidence for a gold-coloured metallic water solution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F21%3A00544159" target="_blank" >RIV/61388963:_____/21:00544159 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1038/s41586-021-03646-5" target="_blank" >https://doi.org/10.1038/s41586-021-03646-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-021-03646-5" target="_blank" >10.1038/s41586-021-03646-5</a>
Alternative languages
Result language
angličtina
Original language name
Spectroscopic evidence for a gold-coloured metallic water solution
Original language description
Insulating materials can in principle be made metallic by applying pressure. In the case of pure water, this is estimated1 to require a pressure of 48 megabar, which is beyond current experimental capabilities and may only exist in the interior of large planets or stars2,3,4. Indeed, recent estimates and experiments indicate that water at pressures accessible in the laboratory will at best be superionic with high protonic conductivity5, but not metallic with conductive electrons1. Here we show that a metallic water solution can be prepared by massive doping with electrons upon reacting water with alkali metals. Although analogous metallic solutions of liquid ammonia with high concentrations of solvated electrons have long been known and characterized6,7,8,9, the explosive interaction between alkali metals and water10,11 has so far only permitted the preparation of aqueous solutions with low, submetallic electron concentrations12,13,14. We found that the explosive behaviour of the water–alkali metal reaction can be suppressed by adsorbing water vapour at a low pressure of about 10−4 millibar onto liquid sodium–potassium alloy drops ejected into a vacuum chamber. This set-up leads to the formation of a transient gold-coloured layer of a metallic water solution covering the metal alloy drops. The metallic character of this layer, doped with around 5 × 1021 electrons per cubic centimetre, is confirmed using optical reflection and synchrotron X-ray photoelectron spectroscopies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/EF16_019%2F0000729" target="_blank" >EF16_019/0000729: Chemical biology for drugging undruggable targets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature
ISSN
0028-0836
e-ISSN
1476-4687
Volume of the periodical
595
Issue of the periodical within the volume
7869
Country of publishing house
GB - UNITED KINGDOM
Number of pages
5
Pages from-to
673-676
UT code for WoS article
000678820500009
EID of the result in the Scopus database
2-s2.0-85111517458