Spectroscopic and quantum chemical study on a non-linear optical material 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl] phenyl4-methylbenzene-1-sulfonate
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F22%3A00547416" target="_blank" >RIV/61388963:_____/22:00547416 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.molstruc.2021.131540" target="_blank" >https://doi.org/10.1016/j.molstruc.2021.131540</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.molstruc.2021.131540" target="_blank" >10.1016/j.molstruc.2021.131540</a>
Alternative languages
Result language
angličtina
Original language name
Spectroscopic and quantum chemical study on a non-linear optical material 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl] phenyl4-methylbenzene-1-sulfonate
Original language description
Chalcone derivatives are known for their characteristic non-linear optical efficiency. In the present work, the relation between the molecular structure and non-linear optical properties of a synthesized chalcone derivative 4-[(1E)-3-(5-chlorothiophen-2-yl)-3-oxoprop-1-en-1-yl] phenyl4-methylbenzene-1-sulfonate (4TPMS) have been investigated by combined experimental and theoretical approaches. The title compound 4TPMS was characterized by spectroscopic techniques viz. Raman, FT-IR, UV-vis, and 1H NMR. Further, the experimental findings were validated by quantum chemical computations. The crystalline geometry of 4TPMS was optimized to energy minima by employing density functional theory (DFT) with B3LYP/6-311++G(d,p) approximation level. Harmonic vibrational frequencies were calculated and the spectral assignments have been done by potential energy distribution (PED) analysis. Significant non-linear optical (NLO) responses of chalcone are mainly caused by charge delocalization between lone pair and antibonding molecular orbitals within the molecule. Hence, natural bond orbital (NBO) was performed to analyze the charge delocalization along with the stability of the molecule. The population analysis based on Charges from Electrostatic Potentials using a Grid based method (CHELPG) was employed to understand the electrophilic/nucleophilic reaction sites.nMoreover, the time-dependent density functional theory (TD-DFT) was employed to predict the energies, absorption wavelengths (λmax) and oscillator strengths (f) of the electronic transitions. The TD-DFT calculation successfully reproduces the experimental UV-Vis spectrum of 4TPMS. The chemical shifts observed in 1H-NMR and the calculated GIAO shielding tensors also showed good agreement. A vibrational contribution to the NLO activity and the effect of charge delocalization on the NLO response were illustrated by comparing the similar kind of chalcone derivatives.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Molecular Structure
ISSN
0022-2860
e-ISSN
1872-8014
Volume of the periodical
1248
Issue of the periodical within the volume
January
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
131540
UT code for WoS article
000704356700007
EID of the result in the Scopus database
2-s2.0-85115893965