All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Halogen-Dance-Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2-Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F22%3A00551643" target="_blank" >RIV/61388963:_____/22:00551643 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/cmdc.202100568" target="_blank" >https://doi.org/10.1002/cmdc.202100568</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/cmdc.202100568" target="_blank" >10.1002/cmdc.202100568</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Halogen-Dance-Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2-Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases

  • Original language description

    A series of acyclic nucleoside phosphonates (ANPs) was designed as inhibitors of bacterial adenylate cyclases (ACs), where adenine was replaced with 2-amino-4-arylthiazoles. The target compounds were prepared using the halogen dance reaction. Final AC inhibitors were evaluated in cell-based assays (prodrugs) and cell-free assays (phosphono diphosphates). Novel ANPs were potent inhibitors of adenylate cyclase toxin (ACT) from Bordetella pertussis and edema factor (EF) from Bacillus anthracis, with substantial selectivity over mammalian enzymes AC1, AC2, and AC5. Six of the new ANPs were more potent or equipotent ACT inhibitors (IC50=9–18 nM), and one of them was more potent EF inhibitor (IC50=12 nM), compared to adefovir diphosphate (PMEApp) with IC50=18 nM for ACT and IC50=36 nM for EF. Thus, these compounds represent the most potent ACT/EF inhibitors based on ANPs reported to date. The potency of the phosphonodiamidates to inhibit ACT activity in J774A.1 macrophage cells was somewhat weaker, where the most potent derivative had IC50=490 nM compared to IC50=150 nM of the analogous adefovir phosphonodiamidate. The results suggest that more efficient type of phosphonate prodrugs would be desirable to increase concentrations of the ANP-based active species in the cells in order to proceed with the development of ANPs as potential antitoxin therapeutics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10401 - Organic chemistry

Result continuities

  • Project

    <a href="/en/project/LTAUSA18086" target="_blank" >LTAUSA18086: Design, synthesis and biological evaluation of potential modulators of human adenylate cyclases</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ChemMedChem

  • ISSN

    1860-7179

  • e-ISSN

    1860-7187

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    e202100568

  • UT code for WoS article

    000709901300001

  • EID of the result in the Scopus database

    2-s2.0-85117435638