All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Brønsted acidity in zeolites measured by deprotonation energy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F22%3A00557524" target="_blank" >RIV/61388963:_____/22:00557524 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216275:25310/22:39919518

  • Result on the web

    <a href="https://doi.org/10.1038/s41598-022-11354-x" target="_blank" >https://doi.org/10.1038/s41598-022-11354-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-022-11354-x" target="_blank" >10.1038/s41598-022-11354-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Brønsted acidity in zeolites measured by deprotonation energy

  • Original language description

    Acid forms of zeolites have been used in industry for several decades but scaling the strength of their acid centers is still an unresolved and intensely debated issue. In this paper, the Bronsted acidity strength in aluminosilicates measured by their deprotonation energy (DPE) was investigated for FAU, CHA, IFR, MOR, FER, MFI, and TON zeolites by means of periodic and cluster calculations at the density functional theory (DFT) level. The main drawback of the periodic DFT is that it does not provide reliable absolute values due to spurious errors associated with the background charge introduced in anion energy calculations. To alleviate this problem, we employed a novel approach to cluster generation to obtain accurate values of DPE. The cluster models up to 150 T atoms for the most stable Bronsted acid sites were constructed on spheres of increasing diameter as an extension of Harrison's approach to calculating Madelung constants. The averaging of DPE for clusters generated this way provides a robust estimate of DPE for investigated zeolites despite slow convergence with the cluster size. The accuracy of the cluster approach was further improved by a scaled electrostatic embedding scheme proposed in this work. The electrostatic embedding model yields the most reliable values with the average deprotonation energy of about 1245 +/- 9 kJ center dot mol(-1) for investigated acidic zeolites. The cluster calculations strongly indicate a correlation between the deprotonation energy and the zeolite framework density. The DPE results obtained with our electrostatic embedding model are highly consistent with the previously reported QM/MM and periodic calculations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA19-19542S" target="_blank" >GA19-19542S: A Structure-Based Predictive Model for Brønsted Acid Catalyzed Reactions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    7301

  • UT code for WoS article

    000790941900036

  • EID of the result in the Scopus database

    2-s2.0-85129429595