All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Why do polyarginines adsorb at neutral phospholipid bilayers and polylysines do not? An insight from density functional theory calculations and molecular dynamics simulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F23%3A00576470" target="_blank" >RIV/61388963:_____/23:00576470 - isvavai.cz</a>

  • Alternative codes found

    RIV/60461373:22340/23:43927673

  • Result on the web

    <a href="https://doi.org/10.1039/D3CP02411C" target="_blank" >https://doi.org/10.1039/D3CP02411C</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d3cp02411c" target="_blank" >10.1039/d3cp02411c</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Why do polyarginines adsorb at neutral phospholipid bilayers and polylysines do not? An insight from density functional theory calculations and molecular dynamics simulations

  • Original language description

    Adsorption of cell-penetrating peptides (CPPs) at cellular membranes is the first and necessary step for their subsequent translocation across cellular membranes into the cytosol. It has been experimentally shown that CPPs rich in arginine (Arg) amino acid penetrate across phospholipid bilayers more effectively than their lysine (Lys) rich counterparts. In this work, we aim to understand the differences in the first translocation step, adsorption of Arg9 and Lys9 peptides at fully hydrated neutral phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipid bilayers and evaluate in detail the energetics of the process using molecular dynamics (MD) simulations and free energy calculations of adsorption of the single peptide. We show that the adsorption of Arg9 is energetically feasible, with the free energy of adsorption being similar to-5.0 kcal mol-1 at PC and similar to-5.5 kcal mol-1 at PE bilayers. In contrast, adsorption of Lys9 is not observed at PC bilayers, and their adsorption at PE bilayers is very weak, being similar to-0.5 kcal mol-1. We show by energy decomposition and analysis of peptide hydration along the membrane that significantly stronger electrostatic interactions of Arg9 with lipid phosphate groups, together with the greater loss of peptide hydration (and in turn stronger hydrophobic interactions) along the membrane translocation path, are the main driving factors governing the adsorption of Arg-rich peptides at neutral lipid bilayers in contrast to Lys-rich peptides. Finally, we also compare the energetics in lipid/bilayer systems with the density functional theory (DFT) calculations of the corresponding model systems in the continuum water model and reveal the energetic differences in different environments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

    1463-9084

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    40

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    27204-27214

  • UT code for WoS article

    001074644600001

  • EID of the result in the Scopus database

    2-s2.0-85174500087