All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The impact of fluctuating light on the dinoflagellate Prorocentrum micans depends on NO3- and CO2 availability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F15%3A00472751" target="_blank" >RIV/61388971:_____/15:00472751 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jplph.2015.01.020" target="_blank" >http://dx.doi.org/10.1016/j.jplph.2015.01.020</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jplph.2015.01.020" target="_blank" >10.1016/j.jplph.2015.01.020</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The impact of fluctuating light on the dinoflagellate Prorocentrum micans depends on NO3- and CO2 availability

  • Original language description

    ncreasing atmospheric pCO(2) and its dissolution into oceans leads to ocean acidification and warming, which reduces the thickness of upper mixing layer (UML) and upward nutrient supply from deeper layers. These events may alter the nutritional conditions and the light regime to which primary producers are exposed in the UML. In order to better understand the physiology behind the responses to the concomitant climate changes factors, we examined the impact of light fluctuation on the dinoflagellate Prorocentrum micans grown at low (1 mu mol L-1) or high (800 mu mol L-1) [NO3-] and at high (1000 mu atm) or low (390 mu atm, ambient) pCO(2). The light regimes to which the algal cells were subjected were (1) constant light at a photon flux density (PFD) of either 100 (C100) or 500 (C500) mu mol m(-2) s(-1) or (2) fluctuating light between 100 or 500 mu mol photons m(-2) s(-1) with a frequency of either 15 (F15) or 60 (F60) min. Under continuous light, the initial portion of the light phase required the concomitant presence of high CO2 and NO3- concentrations for maximum growth. After exposure to light for 3 h, high CO2 exerted a negative effect on growth and effective quantum yield of photosystem II (F-v(')/F-m(')). Fluctuating light ameliorated growth in the first period of illumination. In the second 3 h of treatment, higher frequency (F15) of fluctuations afforded high growth rates, whereas the F60 treatment had detrimental consequences, especially when NO3- concentration was lower. F-v(')/F-m(') responded differently from growth to fluctuating light: the fluorescence yield was always lower than at continuous light at 100 mu mol m(-2) s(-1), and always higher at 500 mu mol m(-2) s(-1). Our data show that the impact of atmospheric pCO(2) increase on primary production of dinoflagellate depends on the availability of nitrate and the irradiance (intensity and the frequency of irradiance fluctuations) to which the cells are exposed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    EE - Microbiology, virology

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Plant Physiology

  • ISSN

    0176-1617

  • e-ISSN

  • Volume of the periodical

    180

  • Issue of the periodical within the volume

    MAY 15

  • Country of publishing house

    PT - PORTUGAL

  • Number of pages

    9

  • Pages from-to

    18-26

  • UT code for WoS article

    000354186000002

  • EID of the result in the Scopus database

    2-s2.0-84927738010