Enzyme-mediated transglycosylation of rutinose (6-O-alpha-l-rhamnosyl-d-glucose) to phenolic compounds by a diglycosidase from Acremonium sp. DSM 24697
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F19%3A00504259" target="_blank" >RIV/61388971:_____/19:00504259 - isvavai.cz</a>
Result on the web
<a href="https://iubmb.onlinelibrary.wiley.com/doi/full/10.1002/bab.1695" target="_blank" >https://iubmb.onlinelibrary.wiley.com/doi/full/10.1002/bab.1695</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/bab.1695" target="_blank" >10.1002/bab.1695</a>
Alternative languages
Result language
angličtina
Original language name
Enzyme-mediated transglycosylation of rutinose (6-O-alpha-l-rhamnosyl-d-glucose) to phenolic compounds by a diglycosidase from Acremonium sp. DSM 24697
Original language description
The structure of the carbohydrate moiety of a natural phenolic glycoside can have a significant effect on the molecular interactions and physicochemical and pharmacokinetic properties of the entire compound, which may include anti-inflammatory and anticancer activities. The enzyme 6-O-alpha-rhamnosyl-beta-glucosidase (EC 3.2.1.168) has the capacity to transfer the rutinosyl moiety (6-O-alpha-l-rhamnopyranosyl-beta-d-glucopyranose) from 7-O-rutinosylated flavonoids to hydroxylated organic compounds. This transglycosylation reaction was optimized using hydroquinone (HQ) and hesperidin as rutinose acceptor and donor, respectively. Since HQ undergoes oxidation in a neutral to alkaline aqueous environment, the transglycosylation process was carried out at pH values <= 6.0. The structure of 4-hydroxyphenyl-beta-rutinoside was confirmed by NMR, that is, a single glycosylated product with a free hydroxyl group was formed. The highest yield of 4-hydroxyphenyl-beta-rutinoside (38%, regarding hesperidin) was achieved in a 2-h process at pH 5.0 and 30 degrees C, with 36 mM OH-acceptor and 5% (v/v) cosolvent. Under the same conditions, the enzyme synthesized glycoconjugates of various phenolic compounds (phloroglucinol, resorcinol, pyrogallol, catechol), with yields between 12% and 28% and an apparent direct linear relationship between the yield and the pK(a) value of the aglycon. This work is a contribution to the development of convenient and sustainable processes for the glycosylation of small phenolic compounds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
<a href="/en/project/LTC17009" target="_blank" >LTC17009: Carotenoids and flavonoids: interactions and hybrid antioxidants</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biotechnology and Applied Biochemistry
ISSN
0885-4513
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
53-59
UT code for WoS article
000458289100006
EID of the result in the Scopus database
2-s2.0-85055577840