All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F20%3A00535845" target="_blank" >RIV/61388971:_____/20:00535845 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/20:10422296

  • Result on the web

    <a href="https://www.nature.com/articles/s41467-020-18970-z" target="_blank" >https://www.nature.com/articles/s41467-020-18970-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41467-020-18970-z" target="_blank" >10.1038/s41467-020-18970-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex

  • Original language description

    The human cis-prenyltransferase (hcis-PT) is an enzymatic complex essential for protein N-glycosylation. Synthesizing the precursor of the glycosyl carrier dolichol-phosphate, mutations in hcis-PT cause severe human diseases. Here, we reveal that hcis-PT exhibits a heterotetrameric assembly in solution, consisting of two catalytic dehydrodolichyl diphosphate synthase (DHDDS) and inactive Nogo-B receptor (NgBR) heterodimers. Importantly, the 2.3 angstrom crystal structure reveals that the tetramer assembles via the DHDDS C-termini as a dimer-of-heterodimers. Moreover, the distal C-terminus of NgBR transverses across the interface with DHDDS, directly participating in active-site formation and the functional coupling between the subunits. Finally, we explored the functional consequences of disease mutations clustered around the active-site, and in combination with molecular dynamics simulations, we propose a mechanism for hcis-PT dysfunction in retinitis pigmentosa. Together, our structure of the hcis-PT complex unveils the dolichol synthesis mechanism and its perturbation in disease. The human cis-prenyltransferase (hcis-PT) complex synthesizes the precursor of the glycosyl carrier dolichol-phosphate and as such it is essential for protein N-glycosylation. The crystal structure of the complex reveals unusual tetrameric architecture and provides insights into dolichol synthesis mechanism and functional consequences of disease-associated hcis-PT mutations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Communications

  • ISSN

    2041-1723

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    5273

  • UT code for WoS article

    000585918500008

  • EID of the result in the Scopus database

    2-s2.0-85092790726