Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F21%3A00543397" target="_blank" >RIV/61388971:_____/21:00543397 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0308814621007639?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0308814621007639?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.foodchem.2021.129757" target="_blank" >10.1016/j.foodchem.2021.129757</a>
Alternative languages
Result language
angličtina
Original language name
Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds
Original language description
Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to & nbsp.predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29 & ndash,103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03 & ndash,0.76 min and interval width of 0.33 & ndash,8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet & rsquo, s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
<a href="/en/project/GA19-00043S" target="_blank" >GA19-00043S: Aryl-sulfotransferases and their application in sulfated metabolite preparation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Food Chemistry
ISSN
0308-8146
e-ISSN
1873-7072
Volume of the periodical
357
Issue of the periodical within the volume
SEP 30 2021
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
129757
UT code for WoS article
000655533400011
EID of the result in the Scopus database
2-s2.0-85104344822