All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adsorption of Hexavalent Chromium Using Activated Carbon Produced from Sargassum ssp.: Comparison between Lab Experiments and Molecular Dynamics Simulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F22%3A00561862" target="_blank" >RIV/61388971:_____/22:00561862 - isvavai.cz</a>

  • Alternative codes found

    RIV/60076658:12310/22:43904901

  • Result on the web

    <a href="https://www.mdpi.com/1420-3049/27/18/6040" target="_blank" >https://www.mdpi.com/1420-3049/27/18/6040</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/molecules27186040" target="_blank" >10.3390/molecules27186040</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adsorption of Hexavalent Chromium Using Activated Carbon Produced from Sargassum ssp.: Comparison between Lab Experiments and Molecular Dynamics Simulations

  • Original language description

    Adsorption is one of the most successful physicochemical approaches for removing heavy metal contaminants from polluted water. The use of residual biomass for the production of adsorbents has attracted a lot of attention due to its cheap price and environmentally friendly approach. The transformation of Sargassum-an invasive brown macroalga-into activated carbon (AC) via phosphoric acid thermochemical activation was explored in an effort to increase the value of Sargassum seaweed biomass. Several techniques (nitrogen adsorption, pH(PZC), Boehm titration, FTIR and XPS) were used to characterize the physicochemical properties of the activated carbons. The SAC600 3/1 was predominantly microporous and mesoporous (39.6% and 60.4%, respectively) and revealed a high specific surface area (1695 m(2)center dot g(-1)). To serve as a comparison element, a commercial reference activated carbon with a large specific surface area (1900 m(2)center dot g(-1)) was also investigated. The influence of several parameters on the adsorption capacity of AC was studied: solution pH, solution temperature, contact time and Cr(VI) concentration. The best adsorption capacities were found at very acid (pH 2) solution pH and at lower temperatures. The adsorption kinetics of SAC600 3/1 fitted well a pseudo-second-order type 1 model and the adsorption isotherm was better described by a Jovanovic-Freundlich isotherm model. Molecular dynamics (MD) simulations confirmed the experimental results and determined that hydroxyl and carboxylate groups are the most influential functional groups in the adsorption process of chromium anions. MD simulations also showed that the addition of MgCl2 to the activated carbon surface before adsorption experiments, slightly increases the adsorption of HCrO4- and CrO42- anions. Finally, this theoretical study was experimentally validated obtaining an increase of 5.6% in chromium uptake.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Molecules

  • ISSN

    1420-3049

  • e-ISSN

    1420-3049

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

    6040

  • UT code for WoS article

    000857092700001

  • EID of the result in the Scopus database

    2-s2.0-85138382656