All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Specific utilization of biopolymers of plant and fungal origin reveals the existence of substrate-specific guilds for bacteria in temperate forest soils

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F22%3A00565241" target="_blank" >RIV/61388971:_____/22:00565241 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0038071722001535?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038071722001535?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.soilbio.2022.108696" target="_blank" >10.1016/j.soilbio.2022.108696</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Specific utilization of biopolymers of plant and fungal origin reveals the existence of substrate-specific guilds for bacteria in temperate forest soils

  • Original language description

    Bacteria play critical roles in soil ecosystems when decomposing structural components of biomass. However, the ability of individual bacterial taxa to utilize various biopolymers is understudied, hampering our understanding of the role of bacteria in the soil carbon cycle. Here, we in situ incubated in forest litter various biopolymers of plant and fungal origin cellulose, xylan, glucomannan, pectin, lignin, 0-1,3-glucan, 0-1,3-1,6-glucan, and chitin to identify bacteria that associated with them during decomposition. After an incubation time of three weeks, all biopolymers were colonized by substantial bacterial numbers. The bacterial communities established on each biopolymer were specific, differing from the community on the surrounding plant litter, which indicates specialization in biopolymer utilization and the existence of distinct substrate-specific guilds. Members of Proteobacteria and Bacteroidetes predominated in all guilds. However, several biopolymers hosted members of other phyla: bacteria affiliated with Planctomycetes were enriched on cellulose, Acidobacteria on xylan, Actinobacteria on pectin, and Firmicutes on glucomannan and 0-1,3-1,6-glucan. The communities on lignin had low diversity, were phylogenetically clustered and were mainly composed of Proteobacteria. The communities on chitin showed higher diversity than those on other biopolymers. Approximately 80% of biopolymer-associated bacteria were specialists and were recovered from only one or two biopolymers. Only three specific phylotypes affiliated with Burkholderia, Klebsiella and Hafnia were present on all biopolymers. Bacterial isolation confirmed the involvement of Bacteroidetes in the decomposition of chitin, Firmicutes in the decomposition of glucomannan and 0-glucans, and the abundance of decomposers from Proteobacteria on all biopolymers. The proliferation of bacteria was observed on all fungally derived biopolymers and most plant-derived biopolymers. Exceptions were pectin and xylan, where bacterial counts were low three orders of magnitude lower than in the surrounding plant litter. The results indicate the involvement of distinct, substrate-specific guilds of bacteria in the utilization of biopolymers in forest topsoil. Furthermore, by classifying soil bacteria into substrate-specific guilds, this paper contributes to efforts to assign functional traits of ecological relevance to individual members of the microbial community.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Soil Biology and Biochemistry

  • ISSN

    0038-0717

  • e-ISSN

  • Volume of the periodical

    171

  • Issue of the periodical within the volume

    AUG 2022

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    108696

  • UT code for WoS article

    000808182500006

  • EID of the result in the Scopus database

    2-s2.0-85130524427