All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unique features of regulation of sulfate assimilation in monocots

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F23%3A00567423" target="_blank" >RIV/61388971:_____/23:00567423 - isvavai.cz</a>

  • Result on the web

    <a href="https://academic.oup.com/jxb/article/74/1/308/6759457" target="_blank" >https://academic.oup.com/jxb/article/74/1/308/6759457</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/jxb/erac402" target="_blank" >10.1093/jxb/erac402</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unique features of regulation of sulfate assimilation in monocots

  • Original language description

    Sulfate assimilation is an essential pathway of plant primary metabolism, regulated by the demand for reduced sulfur (S). The S-containing tripeptide glutathione (GSH) is the key signal for such regulation in Arabidopsis, but little is known about the conservation of these regulatory mechanisms beyond this model species. Using two model monocot species, C-3 rice (Oryza sativa) and C-4 Setaria viridis, and feeding of cysteine or GSH, we aimed to find out how conserved are the regulatory mechanisms described for Arabidopsis in these species. We showed that while in principle the regulation is similar, there are many species-specific differences. For example, thiols supplied by the roots are translocated to the shoots in rice but remain in the roots of Setaria. Cysteine and GSH concentrations are highly correlated in Setaria, but not in rice. In both rice and Setaria, GSH seems to be the signal for demand-driven regulation of sulfate assimilation. Unexpectedly, we observed cysteine oxidation to sulfate in both species, a reaction that does not occur in Arabidopsis. This reaction is dependent on sulfite oxidase, but the enzyme(s) releasing sulfite from cysteine still need to be identified. Altogether our data reveal a number of unique features in the regulation of S metabolism in the monocot species and indicate the need for using multiple taxonomically distinct models to better understand the control of nutrient homeostasis, which is important for generating low-input crop varieties.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Experimental Botany

  • ISSN

    0022-0957

  • e-ISSN

    1460-2431

  • Volume of the periodical

    74

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    308-320

  • UT code for WoS article

    000878758800001

  • EID of the result in the Scopus database

    2-s2.0-85159950671