All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

From piggery wastewater to wheat using microalgae towards zero waste

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F23%3A00573737" target="_blank" >RIV/61388971:_____/23:00573737 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2211926423001868?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2211926423001868?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.algal.2023.103153" target="_blank" >10.1016/j.algal.2023.103153</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    From piggery wastewater to wheat using microalgae towards zero waste

  • Original language description

    Microalgae production is still expensive, driving the need to lower costs while strengthening the industry's environmental sustainability. Microalgae are recognized tools for efficient wastewater treatment, offering the recycling of nutrients and water for agriculture, and producing biomass rich in growth-promoting compounds to improve plant productivity and resistance to adverse conditions. The use of wastewater can reduce cultivation costs as it is a source of nutrients and water. Alternative low-cost methods can significantly decrease harvesting costs, which represents one of the most expensive steps of the whole process. The goal of this work was to evaluate the potential of wastewater-grown microalga biomass for agriculture purposes. To reduce production costs, the microalga Tetradesmus obliquus was produced in pre-treated photo-Fenton (PF) piggery wastewater in combination with the use of different harvesting techniques electrocoagulation, flocculation, and centrifugation, and different combinations. From the wastewater treatment process, two fractions (biomass and supernatant) were evaluated for germination and growth of wheat (Triticum aestivum L.) plants and compared to non-harvested microalga culture (MC), distilled water, and Hoagland (synthetic) solution. The concentrated resulting from PF was also tested as a biofertilizer. The results confirm that both biomass and supernatants are useful for agricultural applications. The obtained biomass elicited a 20–105 % increase in germination index compared to the control, while supernatants were inhibiting. The opposite trend was observed at later stages of wheat growth, where the nutrient-enriched supernatants and the PF concentrate (PF-CC) increased the number of tillers (3–5) and leaves (30–42) after 83 days. Wheat plants treated with MC and PF-CC produced similar number of ears (3.4 ± 0.5 and 6.0 ± 4.1 ears per plant, respectively) than the synthetic control (5.7 ± 1.4) after 182 days. All fractions obtained from the process can be used in a zero-waste process.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algal Research-Biomass Biofuels and Bioproducts

  • ISSN

    2211-9264

  • e-ISSN

    2211-9264

  • Volume of the periodical

    72

  • Issue of the periodical within the volume

    May 2023

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    103153

  • UT code for WoS article

    001016972500001

  • EID of the result in the Scopus database

    2-s2.0-85161034477