Ferrocene-like iron bis(dicarbollide), [3-Fe-III-(1,2-C2B9H11)(2)](-). The first experimental and theoretical refinement of a paramagnetic B-11 NMR spectrum
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F10%3A00357024" target="_blank" >RIV/61388980:_____/10:00357024 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Ferrocene-like iron bis(dicarbollide), [3-Fe-III-(1,2-C2B9H11)(2)](-). The first experimental and theoretical refinement of a paramagnetic B-11 NMR spectrum
Original language description
Nuclear magnetic resonance (NMR) of paramagnetic molecules (pNMR) provides detailed information on the structure and bonding of metallo-organic systems. The physical mechanisms underlying chemical shifts are considerably more complicated in the presenceof unpaired electrons than in the case of diamagnetic compounds. We show that this combined theoretical and experimental analysis constitutes a firm basis for the assignment of experimental B-11 NMR chemical shifts in paramagnetic metallaboranes. In thecalculations, the roles of the different physical contributions to the pNMR chemical shift are elaborated, and the performance of different popular exchange-correlation functionals of density-functional theory as well as basis sets, are evaluated. A dynamic correction to the calculated shifts via first-principles molecular dynamics simulations is found to be important. Solvent effects on the chemical shifts were computed and found to be of minor significance.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CA - Inorganic chemistry
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
26
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
—
UT code for WoS article
000279098300015
EID of the result in the Scopus database
—