Photoelectron spectroscopy of [Mo6X14](2-) dianions (X = Cl-I)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F19%3A00517353" target="_blank" >RIV/61388980:_____/19:00517353 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0302671" target="_blank" >http://hdl.handle.net/11104/0302671</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5130185" target="_blank" >10.1063/1.5130185</a>
Alternative languages
Result language
angličtina
Original language name
Photoelectron spectroscopy of [Mo6X14](2-) dianions (X = Cl-I)
Original language description
Photoelectron spectroscopy and theoretical investigations have been performed to systematically probe the intrinsic electronic properties of [Mo6X14]2- (X = halogen). All three PE spectra of gaseous [Mo6X14]2- (X = Cl, Br, I) dianions, which were generated by electrospray ionization, exhibit multiple resolved peaks in the recorded binding energy range. Theoretical investigations on the orbital structure and charge distribution were performed to support interpretation of the observed spectra and were further extended onto [Mo6F14]2-, a dianion that was not available for the experimental study. The measured adiabatic (ADE) and vertical detachment energies (VDE) for X = Cl-I were well reproduced by density functional theory calculations (accuracy ∼0.1 eV). Corresponding ADE/VDE values for the dianions were found to be 1.48/2.13 (calc.) and 2.30/2.65, 2.30/2.62, and 2.20/2.42 eV (all expt.) for X = F, Cl, Br, and I, respectively, showing an interesting buckled trend of electron binding energy (EBE) along the halogen series, i.e., EBE (F) ≪ EBE (Cl) ∼ EBE (Br) > EBE (I). Molecular orbital analyses indicate different mixing of metal and halogen atomic orbitals, which is strongly dependent on the nature of X, and suggest that the most loosely bound electrons are detached mainly from the metal core for X = F and Cl, but from halide ligands for X = Br and I. The repulsive Coulomb barrier (RCB), estimated from the photon energy dependent spectra, decreases with increasing halogen size, from 1.8 eV for X = Cl to 1.6 eV for X = I. Electrostatic potential modeling confirms the experimental RCB values and predicts that the most favorable electron detaching pathway should lie via the face-bridging halide ligands.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
<a href="/en/project/GA18-05076S" target="_blank" >GA18-05076S: Biomaterials based on octahedral molybdenum clusters as singlet oxygen radiosensitizers</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Volume of the periodical
151
Issue of the periodical within the volume
19
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
194310
UT code for WoS article
000504060200028
EID of the result in the Scopus database
2-s2.0-85075481701