All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design and Performance of Novel Self-Cleaning g-C3N4/PMMA/PUR Membranes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F20%3A00524891" target="_blank" >RIV/61388980:_____/20:00524891 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27640/20:10244686 RIV/61989100:27740/20:10244686

  • Result on the web

    <a href="http://hdl.handle.net/11104/0309124" target="_blank" >http://hdl.handle.net/11104/0309124</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym12040850" target="_blank" >10.3390/polym12040850</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design and Performance of Novel Self-Cleaning g-C3N4/PMMA/PUR Membranes

  • Original language description

    In the majority of photocatalytic applications, the photocatalyst is dispersed as a suspension of nanoparticles. The suspension provides a higher surface for the photocatalytic reaction in respect to immobilized photocatalysts. However, this implies that recovery of the particles by filtration or centrifugation is needed to collect and regenerate the photocatalyst. This complicates the regeneration process and, at the same time, leads to material loss and potential toxicity. In this work, a new nanofibrous membrane, g-C3N4/PMMA/PUR, was prepared by the fixation of exfoliated g-C3N4 to polyurethane nanofibers using thin layers of poly(methyl methacrylate) (PMMA). The optimal amount of PMMA was determined by measuring the adsorption and photocatalytic properties of g-C3N4/PMMA/PUR membranes (with a different PMMA content) in an aqueous solution of methylene blue. It was found that the prepared membranes were able to effectively adsorb and decompose methylene blue. On top of that, the membranes evinced a self-cleaning behavior, showing no coloration on their surfaces after contact with methylene blue, unlike in the case of unmodified fabric. After further treatment with H2O2, no decrease in photocatalytic activity was observed, indicating that the prepared membrane can also be easily regenerated. This study promises possibilities for the production of photocatalytic membranes and fabrics for both chemical and biological contaminant control.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    850

  • UT code for WoS article

    000535587700120

  • EID of the result in the Scopus database

    2-s2.0-85086639120