In situ high-temperature X-ray diffraction study of Sc-doped titanium oxide nanocrystallites
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F20%3A00535911" target="_blank" >RIV/61388980:_____/20:00535911 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1107/S1600576720012017" target="_blank" >https://doi.org/10.1107/S1600576720012017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1107/S1600576720012017" target="_blank" >10.1107/S1600576720012017</a>
Alternative languages
Result language
angličtina
Original language name
In situ high-temperature X-ray diffraction study of Sc-doped titanium oxide nanocrystallites
Original language description
Titanium dioxide is an inexpensive wide-gap highly ionic semiconductor with striking photocatalytic capabilities in several heterogeneous photoredox reactions. A small crystal size is desirable to maximize the surface area, since photocatalytic reactions occur at the surface of a photocatalyst. Presented here are the synthesis and microstructural characterization of 4 at.% Sc-doped TiO2 (4SDT) prepared by water-based co-precipitation. The crystal structure of 4SDT was examined via in situ high-temperature powder X-ray diffraction experiments from 25 to 1200°C. Rietveld analysis revealed single-phase anatase up to 875°C, while at 900°C the anatase-to-rutile phase transformation occurred and at higher temperatures additional reflections of Sc-rich phases (Sc2TiO5 from 975°C and Ti3Sc4O12 or Sc2O3 at 1200°C) were observed. Debye function analysis (DFA) was applied to model the total scattering pattern directly in reciprocal space, allowing the reconstruction of Ti vacancies. Both Rietveld and DFA methods were applied to estimate the nanocrystallite size and shape with consistent growth in crystallite size with temperature: an ellipsoid shape with equatorial ∼4.7 nm / axial (001) ∼6.9 nm at 25°C to equatorial ∼27.9 nm / axial (001) ∼39.6 nm at 900°C refined by Rietveld analysis, versus a cylinder shape with Da,b = 4.3 nm and size dispersion σab = 1.5 nm, Lc = 4.9 nm and σc = 2.3 nm at 25°C to Da,b = 21.4 nm, σab = 8.3 nm, Lc = 23.9 and σc = 10.9 nm at 900°C estimated by DFA. The microstructural changes obtained by Rietveld and DFA methods were supported by high-resolution transmission electron microscopy image analysis, as well as by the less direct nitrogen sorption techniques that provide information on the size of non-agglomerated and dense particles. The Ti site-occupancy factor showed a linear increase from 0.6–0.8 at 25°C to unity at 900°C for anatase, and from ∼0.7 at 900°C to unity at 1200°C for rutile, via Rietveld analysis and DFA.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
<a href="/en/project/GA18-15613S" target="_blank" >GA18-15613S: Integrating plasmonic metal nanoparticles with photonic TiO2 nanosheets for synergistically water splitting and environmental photocatalysis</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Applied Crystallography
ISSN
1600-5767
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
1452-1461
UT code for WoS article
000595702500006
EID of the result in the Scopus database
2-s2.0-85097303651