All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Key Role of Tin (Sn) in Microstructure and Mechanical Properties of Ti2SnC (M2AX) Thin Nanocrystalline Films and Powdered Polycrystalline Samples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F22%3A00552393" target="_blank" >RIV/61388980:_____/22:00552393 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389005:_____/22:00552393 RIV/44555601:13420/22:43897338 RIV/00216208:11310/22:10443861 RIV/68407700:21110/22:00356201

  • Result on the web

    <a href="http://hdl.handle.net/11104/0327534" target="_blank" >http://hdl.handle.net/11104/0327534</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano12030307" target="_blank" >10.3390/nano12030307</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Key Role of Tin (Sn) in Microstructure and Mechanical Properties of Ti2SnC (M2AX) Thin Nanocrystalline Films and Powdered Polycrystalline Samples

  • Original language description

    Layered ternary Ti2SnC carbides have attracted significant attention because of their ad-vantage as a M2AX phase to bridge the gap between properties of metals and ceramics. In this study, Ti2SnC materials were synthesized by two different methods—an unconventional low-energy ion facility (LEIF) based on Ar+ ion beam sputtering of the Ti, Sn, and C targets and sintering of a com-pressed mixture consisting of Ti, Sn, and C elemental powders up to 1250 °C. The Ti2SnC nanocrys-talline thin films obtained by LEIF were irradiated by Ar+ ions with an energy of 30 keV to the fluence of 1.1015 cm−2 in order to examine their irradiation-induced resistivity. Quantitative structural analysis obtained by Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) confirmed transition from ternary Ti2SnC to binary Ti0.98C carbide due to irradiation-induced β-Sn surface segregation. The nanoindentation of Ti2SnC thin nanocrys-talline films and Ti2SnC polycrystalline powders shows that irradiation did not affect significantly their mechanical properties when concerning their hardness (H) and Young’s modulus (E) We high-lighted the importance of the HAADF-STEM techniques to track atomic pathways clarifying the behavior of Sn atoms at the proximity of irradiation-induced nanoscale defects in Ti2SnC thin films.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

    2079-4991

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    23

  • Pages from-to

    307

  • UT code for WoS article

    000756268200001

  • EID of the result in the Scopus database

    2-s2.0-85122967969