Reusable and Antibacterial Polymer-Based Nanocomposites for the Adsorption of Dyes and the Visible-Light-Driven Photocatalytic Degradation of Antibiotics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F22%3A00560892" target="_blank" >RIV/61388980:_____/22:00560892 - isvavai.cz</a>
Alternative codes found
RIV/44555601:13520/22:43897121
Result on the web
<a href="https://hdl.handle.net/11104/0335621" target="_blank" >https://hdl.handle.net/11104/0335621</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/gch2.202200076" target="_blank" >10.1002/gch2.202200076</a>
Alternative languages
Result language
angličtina
Original language name
Reusable and Antibacterial Polymer-Based Nanocomposites for the Adsorption of Dyes and the Visible-Light-Driven Photocatalytic Degradation of Antibiotics
Original language description
Adsorption and advanced oxidation processes, especially photocatalysis, are amongst the most common water treatment methodologies. Unfortunately, using each of these techniques independently does not fully eliminate the pollutants of diverse nature, which are present in wastewater. Here, an avenue for multifunctional materials for water treatment is opened by reporting for the first time the preparation, characterization, and study of the properties of a novel multifunctional nanocomposite with both adsorption and visible-light-driven photocatalysis abilities. These multifunctional nanocomposites, namely iron (II, III) oxide/poly(N-isopropylacrylamide-co-methacrylic acid)/silver-titanium dioxide (Fe3O4/P(NIPAM-co-MAA)/Ag-TiO2), are prepared by combining magnetic polymeric microspheres (Fe3O4/P(NIPAM-co-MAA)) with silver-decorated titanium dioxide nanoparticles (Ag-TiO2 NPs). Cationic dyes, such as basic fuchsin (BF), can be adsorbed by the nanocomposites thanks to the carboxylic groups of Fe3O4/P(NIPAM-co-MAA) microspheres. Concomitantly, the presence of Ag-TiO2 NPs endows the system with the visible-light-driven photocatalytic degradation ability toward antibiotics such as ciprofloxacin (CIP) and norfloxacin (NFX). Furthermore, the proposed nanocomposites show antibacterial activity toward Escherichia coli (E. coli), thanks to the presence of silver nanoparticles (Ag NPs). Due to the superparamagnetic properties of iron (II, III) oxide nanoparticles (Fe3O4 NPs), the nanocomposites can be also recycled and reused, after the cleaning process, by using an external magnetic field.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Global Challenges
ISSN
2056-6646
e-ISSN
2056-6646
Volume of the periodical
6
Issue of the periodical within the volume
11
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
2200076
UT code for WoS article
000845081700001
EID of the result in the Scopus database
2-s2.0-85141640307