Mild selective photochemical oxidation of an organic sulfide using OxP-polyimide porous polymers as singlet oxygen generators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F24%3A00584536" target="_blank" >RIV/61388980:_____/24:00584536 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0352453" target="_blank" >https://hdl.handle.net/11104/0352453</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/14686996.2024.2322458" target="_blank" >10.1080/14686996.2024.2322458</a>
Alternative languages
Result language
angličtina
Original language name
Mild selective photochemical oxidation of an organic sulfide using OxP-polyimide porous polymers as singlet oxygen generators
Original language description
A series of porous organic polymers based on a singlet oxygen generating oxoporphyinogen ('OxP') has been successfully prepared from a pseudotetrahedral OxP-tetraamine precursor (OxP(4-NH2Bn)(4)) by its reaction with tetracarboxylic acid dianhydrides under suitable conditions. Of the compounds studied, those containing naphthalene (OxP-N) and perylene (OxP-P) spacers, respectively, have large surface areas (similar to 530 m(2) g(-1)). On the other hand, the derivative with a simple benzene spacer (OxP-B) exhibits the best O-1(2) generating capability. Although the starting OxP-tetraamine precursor is a poor O-1(2) generator, its incorporation into OxP POPs leads to a significant enhancement of O-1(2) productivity, which is largely due to the transformation of NH2 groups to electron-withdrawing diimides. Overall O-1(2) production efficacy of OxP-POPs under irradiation by visible light is significantly improved over the common reference material PCN-222. All the materials OxP-B, OxP-N and OxP-P promote oxidation of thioanisole involving conversion of ambient triplet state oxygen to singlet oxygen under visible light irradiation and its reaction with the sulfide. Although the reaction rate of the oxidation promoted by OxP POPs is generally lower than for conventional materials (such as PCN-222) or previously studied OxP derivatives, undesired overoxidation of the substrate to methyl phenyl sulfone is suppressed. For organic sulfides, selectivity of oxidation is especially important for detoxification of mustard gas (bis(2-chloroethyl)sulfide) or similarly toxic compounds since controlled oxidation leads to the low toxicity bis(2-chloroethyl)sulfoxide while overoxidation leads to intoxification (since bis(2-chloroethyl)sulfone presents greater toxicity to humans than the sulfide substrate). Therefore, OxP POPs capable of promoting selective oxidation of sulfides to sulfoxides have excellent potential to be used as mild and selective detoxification agents.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Science and Technology of Advanced Materials
ISSN
1468-6996
e-ISSN
1878-5514
Volume of the periodical
25
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
2322458
UT code for WoS article
001178915500001
EID of the result in the Scopus database
2-s2.0-85186405500