All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

OPTIMIZED NUMBER OF SIGNAL FEATURES FOR IDENTIFICATION OF AE SOURCES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F08%3A00315855" target="_blank" >RIV/61388998:_____/08:00315855 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    OPTIMALIZACE VOLBY SIGNÁLOVÝCH PARAMETRŮ PRO ROZPOZNÁVÁNÍ ZDROJŮ AKUSTICKÉ EMISE

  • Original language description

    Umělé neuronové sítě (ANN) jsou efektivním nástrojem pro identifikaci zdrojů akustické emise (AE). Komplikovaným problémem obecného rozpoznávání dat je vhodná volba extrahovaných parametrů. Standardní charakteristiky signálu AE jsou nezřídka redundantnía nebo pro identifikační problém irelevantní. Za účelem redukce redundance dat jsou v příspěvku navrženy modifikace standardních emisních parametrů, jejichž výběr je dále optimalizován faktorovou analýzou a citlivostní analýzou identifikačních neuronových sítí. Tento optimalizační proces je testován při rozpoznávání zdrojů AE vznikajících během únavových zkoušek prováděných na součástech letecké konstrukce. Optimalizované signálové charakteristiky zachovávají dostatečnou informaci při minimálním počtu extrahovaných parametrů.

  • Czech name

    OPTIMALIZACE VOLBY SIGNÁLOVÝCH PARAMETRŮ PRO ROZPOZNÁVÁNÍ ZDROJŮ AKUSTICKÉ EMISE

  • Czech description

    Umělé neuronové sítě (ANN) jsou efektivním nástrojem pro identifikaci zdrojů akustické emise (AE). Komplikovaným problémem obecného rozpoznávání dat je vhodná volba extrahovaných parametrů. Standardní charakteristiky signálu AE jsou nezřídka redundantnía nebo pro identifikační problém irelevantní. Za účelem redukce redundance dat jsou v příspěvku navrženy modifikace standardních emisních parametrů, jejichž výběr je dále optimalizován faktorovou analýzou a citlivostní analýzou identifikačních neuronových sítí. Tento optimalizační proces je testován při rozpoznávání zdrojů AE vznikajících během únavových zkoušek prováděných na součástech letecké konstrukce. Optimalizované signálové charakteristiky zachovávají dostatečnou informaci při minimálním počtu extrahovaných parametrů.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BI - Acoustics and oscillation

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Defektoskopie 2008

  • ISBN

    978-80-214-3759-3

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

  • Publisher name

    Technická univerzita Brno VUT

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Nov 4, 2008

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article