Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F12%3A00376689" target="_blank" >RIV/61388998:_____/12:00376689 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/100819205" target="_blank" >http://dx.doi.org/10.1137/100819205</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/100819205" target="_blank" >10.1137/100819205</a>
Alternative languages
Result language
angličtina
Original language name
Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation
Original language description
The quasistatic rate-independent evolution of the Prager-Ziegler-type model of linearized plasticity with hardening is shown to converge to the rate-independent evolution of the Prandtl-Reuss elastic/perfectly plastic model. Based on the concept of energetic solutions we study the convergence of the solutions in the limit for hardening coefficients converging to $0$ by using the abstract method of Gamma-convergence for rate-independent systems. An unconditionally convergent numerical scheme is devised and 2D and 3D numerical experiments are presented. A two-sided energy inequality is a posteriori verified to document experimental convergence rates.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F0357" target="_blank" >GAP201/10/0357: Modern mathematical and computational models for inelastic processes in solids</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Numerical Analysis
ISSN
0036-1429
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
951-976
UT code for WoS article
000303398700027
EID of the result in the Scopus database
—