Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F13%3A00396669" target="_blank" >RIV/61388998:_____/13:00396669 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/zamm.201200239" target="_blank" >http://dx.doi.org/10.1002/zamm.201200239</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201200239" target="_blank" >10.1002/zamm.201200239</a>
Alternative languages
Result language
angličtina
Original language name
Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity
Original language description
An adhesive unilateral contact of elastic bodies with a small viscosity in the linear Kelvin-Voigt rheology at small strains is scrutinized. The flow-rule for debonding the adhesive is considered rate-independent and unidirectional, and inertia is neglected. The asymptotics for the viscosity approaching zero towards purely elastic material involves a certain defect-like measure recording in some sense natural additional energy dissipated in the bulk due to (vanishing) viscosity, which is demonstrated onparticular 2-dimensional computational simulations based on a semi-implicit time discretisation and a spacial discretisation implemented by boundary-element method.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F0357" target="_blank" >GAP201/10/0357: Modern mathematical and computational models for inelastic processes in solids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift fuer Angewandte Mathematik und Mechanik
ISSN
1521-4001
e-ISSN
—
Volume of the periodical
93
Issue of the periodical within the volume
10 11
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
823-840
UT code for WoS article
—
EID of the result in the Scopus database
—