All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Finite Element Modelling of the Effect of Stiffness and Damping of Vocal Fold Layers on their Vibrations and Produced Sound

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F16%3A00449840" target="_blank" >RIV/61388998:_____/16:00449840 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26210/16:PU116735

  • Result on the web

    <a href="http://dx.doi.org/10.4028/www.scientific.net/AMM.821.657" target="_blank" >http://dx.doi.org/10.4028/www.scientific.net/AMM.821.657</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4028/www.scientific.net/AMM.821.657" target="_blank" >10.4028/www.scientific.net/AMM.821.657</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Finite Element Modelling of the Effect of Stiffness and Damping of Vocal Fold Layers on their Vibrations and Produced Sound

  • Original language description

    The study presents a two-dimensional (2D) finite element (FE) model of the fluid-structure- acoustic interaction during self-sustained oscillation of the human vocal folds (VF). The FE model combines the FE models of the VF, trachea and a simplified human vocal tract shaped for phonation of a Czech vowel [a:]. The developed FE model comprises large deformations of the VF tissue, VF contact, fluid-structure interaction (FSI), morphing of the fluid mesh according to the VF motion (Arbitrary Lagrangian-Eulerian approach), solution of unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. The effect of stiffness and damping of lamina propria, which can be caused by certain VF pathologies, on VF vibrations and produced sound are analyzed. The numerical simulations showed that stiffer lamina propria results in a decrease of the maximum width of glottal opening and in a decrease of the fundamental vibration frequency.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BI - Acoustics and oscillation

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP101%2F12%2F1306" target="_blank" >GAP101/12/1306: Biomechanical modeling of human voice production - way to artificial vocal folds</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Mechanics and Materials

  • ISSN

    1662-7482

  • e-ISSN

  • Volume of the periodical

    821

  • Issue of the periodical within the volume

    2016

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    8

  • Pages from-to

    657-664

  • UT code for WoS article

  • EID of the result in the Scopus database