All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of turbulence in FE model of human vocal folds self-oscillation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F17%3A00474689" target="_blank" >RIV/61388998:_____/17:00474689 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of turbulence in FE model of human vocal folds self-oscillation

  • Original language description

    The purpose of the study is to determine whether a turbulence model in fluid flow calculation affects the vocal folds (VF) vibration and the acoustics of human vocal tract (VT). The objective is examined using a two-dimensional (2D) finite element (FE) model of the fluid-structure-acoustic interaction for self-sustained oscillations of the VF. The FE model consists of the models of the VF, the trachea and a simplified model of the human VT. The developed FE model includes large deformations of the VF tissue and VF contact interrupting the airflow during glottis closure. The airflow is modelled by the unsteady viscous compressible Navier-Stokes equations, without and with the Shear Stress Transport (SST) turbulence model. Fluid-structure interaction (FSI) and morphing of the fluid mesh are realized using Arbitrary Lagrangian-Eulerian (ALE) approach. The method is applied on the FE model of the VT shaped for the Czech vowel [a:]. Also effect of varying stiffness of the superficial lamina propria (SLP) is analyzed. The numerical simulations showed that considering of the turbulence affects mainly higher frequencies apparent in a frequency spectrum of the VT acoustics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10307 - Acoustics

Result continuities

  • Project

    <a href="/en/project/GA16-01246S" target="_blank" >GA16-01246S: Computational and experimental modelling of self-induced vibrations of vocal folds and influence of their impairments on human voice</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Engineering Mechanics 2017

  • ISBN

    978-80-214-5497-2

  • ISSN

    1805-8248

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    366-369

  • Publisher name

    University of technology, Institute of Solid Mechanics, Mechatronics and Biomechanics

  • Place of publication

    Brno

  • Event location

    Svratka

  • Event date

    May 15, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000411657600081