All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A new approach to model mixed hydrates

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F18%3A00486183" target="_blank" >RIV/61388998:_____/18:00486183 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.fluid.2017.12.015" target="_blank" >http://dx.doi.org/10.1016/j.fluid.2017.12.015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fluid.2017.12.015" target="_blank" >10.1016/j.fluid.2017.12.015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A new approach to model mixed hydrates

  • Original language description

    A new model for mixed hydrates is proposed, which is intended for modeling the formation of mixed hydrates in carbon capture and storage (CCS)-relevant mixtures. The model is based on the model developed by Ballard and Sloan [A.L. Ballard, E.D. Sloan Jr., Fluid Phase Equilib. 194 (2002) 371-383], which itself is based on the statistical approach by van der Waals and Platteeuw [J.H. van der Waals, J.C. Platteeuw, Adv. Chem. Phys. 2 (1959) 1-57]. The model of Ballard and Sloan contains a considerable amount of adjustable parameters for mixed hydrates and comparatively complex mixing rules, especially for the molar volume of mixed hydrates. For the newly developed mixed hydrate model, a simple mixing rule for the volume is used, which does not contain any adjustable parameters. Comparisons of the new model with experimental data for mixed hydrates in the ternary system carbon dioxide + methane + water show better results than the model by Ballard and Sloan. Results for the quaternary system nitrogen + oxygen + argon + water are in good agreement with the available experimental data. Furthermore, as in our previous work focused on modeling hydrates of pure gases [Fluid Phase Equilib. 427 (2016) 268] and contrary to other published hydrate models, reference equations of state are used in order to model phases in equilibrium with hydrates. A comprehensive study on phase equilibria with up to four phases in equilibrium for ternary mixtures forming gas hydrates and other solid phases was carried out in this work. The obtained results demonstrate the capabilities of the proposed mixed hydrate model and developed phase equilibrium algorithms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/GA17-08218S" target="_blank" >GA17-08218S: Thermal Energy Storage Materials: Thermophysical Characteristics for the Design of Thermal Batteries</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fluid Phase Equilibria

  • ISSN

    0378-3812

  • e-ISSN

  • Volume of the periodical

    459

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    16

  • Pages from-to

    170-185

  • UT code for WoS article

    000423002800017

  • EID of the result in the Scopus database

    2-s2.0-85038838696