All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Torsion dissipated energy of hard rubbers as function of hyperelastic deformation energy of the Yeoh

Result description

In this paper, we are proposing a new formulation of dissipated energy of hard rubbers as a function of the deformation energy expressed by the Yeoh hyperelastic model. Torsion deformation is considered as a planar deformation of a simple shear on the surface of a cylinder. Thus the deformation energy is dependent only on the first invariant of strain. Based on the experiment, a “hyperelastic proportional damping” (HPD) is proposed for hard rubbers under finite strains. Such damping is analogical to the model of proportional damping in the linear theory of viscoelasticity, i.e. the dissipated energy is proportional to the deformation energy multiplied by the frequency of dynamic harmonic loading. To obtain the experimental data, samples of hard EPDM rubbers of different harnesses were dynamically tested on a torsional test rig for different frequencies and amplitudes. The Yeoh model is chosen since the deformation function is dependent only on the first strain invariant for the description of the simple shear of a surface cylinder. The Yeoh constants are evaluated by curve fitting of the analytical stress function to the experimental torsion stress-deformation curve. The constants are used to express the deformation energy of the Yeoh model for specific cases of tested rubbers. The coefficients of hyperelastic proportional damping are evaluated on the basis of experimental results.

Keywords

first invariant deformationsimple sheardeformation energy

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Torsion dissipated energy of hard rubbers as function of hyperelastic deformation energy of the Yeoh

  • Original language description

    In this paper, we are proposing a new formulation of dissipated energy of hard rubbers as a function of the deformation energy expressed by the Yeoh hyperelastic model. Torsion deformation is considered as a planar deformation of a simple shear on the surface of a cylinder. Thus the deformation energy is dependent only on the first invariant of strain. Based on the experiment, a “hyperelastic proportional damping” (HPD) is proposed for hard rubbers under finite strains. Such damping is analogical to the model of proportional damping in the linear theory of viscoelasticity, i.e. the dissipated energy is proportional to the deformation energy multiplied by the frequency of dynamic harmonic loading. To obtain the experimental data, samples of hard EPDM rubbers of different harnesses were dynamically tested on a torsional test rig for different frequencies and amplitudes. The Yeoh model is chosen since the deformation function is dependent only on the first strain invariant for the description of the simple shear of a surface cylinder. The Yeoh constants are evaluated by curve fitting of the analytical stress function to the experimental torsion stress-deformation curve. The constants are used to express the deformation energy of the Yeoh model for specific cases of tested rubbers. The coefficients of hyperelastic proportional damping are evaluated on the basis of experimental results.

  • Czech name

  • Czech description

Classification

  • Type

    JSC - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20302 - Applied mechanics

Result continuities

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied and Computational Mechanics

  • ISSN

    1802-680X

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    9

  • Pages from-to

    111-118

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85059859377

Basic information

Result type

JSC - Article in a specialist periodical, which is included in the SCOPUS database

JSC

OECD FORD

Applied mechanics

Year of implementation

2018