Utilization of Convolution Neural Network Based Road Detection in Mobile Robot Localization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00508666" target="_blank" >RIV/61388998:_____/19:00508666 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Utilization of Convolution Neural Network Based Road Detection in Mobile Robot Localization
Original language description
Mobile robot on-road navigation requires fusion of both global and local sensory information with an emphasis on the road detection processing. The paper deals with the road detection based on convolution neural networks (CNN) using commonly available tools such as TensorFlow and Keras. The road is defined by its linear boundaries. Network output is formed by the road definition together with classification parameters and serves as a local sensor in Kalman filter based localization. CNN based road detection is currently capable to successfully detect about 90% of images.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Engineering mechanics 2019. Book of full texts
ISBN
978-80-87012-71-0
ISSN
1805-8248
e-ISSN
—
Number of pages
4
Pages from-to
203-206
Publisher name
Institute of Thermomechanics of the Czech Academy of Sciences
Place of publication
Prague
Event location
Svratka
Event date
May 13, 2019
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—