Finite thermoelastoplasticity and creep under small elastic strains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00517114" target="_blank" >RIV/61388998:_____/19:00517114 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/19:10403461
Result on the web
<a href="https://journals.sagepub.com/doi/full/10.1177/1081286518774883" target="_blank" >https://journals.sagepub.com/doi/full/10.1177/1081286518774883</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1081286518774883" target="_blank" >10.1177/1081286518774883</a>
Alternative languages
Result language
angličtina
Original language name
Finite thermoelastoplasticity and creep under small elastic strains
Original language description
A mathematical model for an elastoplastic continuum subject to large strains is presented. The inelastic response is modelled within the frame of rate-dependent gradient plasticity for non-simple materials. Heat diffuses through the continuum by the Fourier law in the actual deformed configuration. Inertia makes the nonlinear problem hyperbolic. The modelling assumption of small elastic Green–Lagrange strains is combined in a thermodynamically consistent way with the possibly large displacements and large plastic strain. The model is amenable to a rigorous mathematical analysis. The existence of suitably defined weak solutions and a convergence result for Galerkin approximations is proved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA16-03823S" target="_blank" >GA16-03823S: Homogenization and multi-scale computational modelling of flow and nonlinear interactions in porous smart structures</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Mechanics of Solids
ISSN
1081-2865
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
1161-1181
UT code for WoS article
000463924000016
EID of the result in the Scopus database
2-s2.0-85052583982