Dynamics of charged elastic bodies under diffusion at large strains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F20%3A00536114" target="_blank" >RIV/61388998:_____/20:00536114 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10420910
Result on the web
<a href="https://www.aimsciences.org/article/doi/10.3934/dcdsb.2019234" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/dcdsb.2019234</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcdsb.2019234" target="_blank" >10.3934/dcdsb.2019234</a>
Alternative languages
Result language
angličtina
Original language name
Dynamics of charged elastic bodies under diffusion at large strains
Original language description
We present a model for the dynamics of elastic or poroelastic bodies with monopolar repulsive long-range (electrostatic) interactions at large strains. Our model respects (only) locally the non-self-interpenetration condition but can cope with possible global self-interpenetration, yielding thus a certain justification of most of engineering calculations which ignore these effects in the analysis of elastic structures. These models necessarily combines Lagrangian (material) description with Eulerian (actual) evolving configuration evolving in time. Dynamical problems are studied by adopting the concept of nonlocal nonsimple materials, applying the change of variables formula for Lipschitz-continuous mappings, and relying on a positivity of determinant of deformation gradient thanks to a result by Healey and Kromer.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-04956S" target="_blank" >GA19-04956S: Dynamic and nonlinear behaviour of smart structures; modelling and optimization</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems-Series B
ISSN
1531-3492
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
1415-1437
UT code for WoS article
000505581000012
EID of the result in the Scopus database
2-s2.0-85077563896