On Reynolds-averaged turbulence modeling with immersed boundary method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00573870" target="_blank" >RIV/61388998:_____/23:00573870 - isvavai.cz</a>
Result on the web
<a href="http://www2.it.cas.cz/fm2015/im/admin/showfile/data/my/Papers/2023/15-TPFM2023.pdf" target="_blank" >http://www2.it.cas.cz/fm2015/im/admin/showfile/data/my/Papers/2023/15-TPFM2023.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/TPFM.2023.015" target="_blank" >10.14311/TPFM.2023.015</a>
Alternative languages
Result language
angličtina
Original language name
On Reynolds-averaged turbulence modeling with immersed boundary method
Original language description
The immersed boundary (IB) method is an approach in the computational fluid dynamics in which complex geometry conforming meshes are replaced by simple ones and the true simulated geometry is projected onto the simple mesh by a scalar field and adjustment of governing equations. Such an approach is particularly advantageous in topology optimizations (TO) where it allows for substantial speed-up since a single mesh can be used for all the tested topologies. In our previous work, we linked our custom IB variant, the hybrid fictitious domain-immersed boundary method (HFDIB), with a TO framework and successfully carried out an optimization under laminar flow conditions. However, to allow for optimizations of reallife components, the IB approach needs to be coupled with an affordable turbulence modeling. In this contribution, we focus on extending the HFDIB approach by the possibility to perform Reynolds-averaged simulations (RAS). In particular, we implemented the k − ω turbulence model and wall functions for closure variables and velocity.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Topical Problems of Fluid Mechanics 2023
ISBN
978-80-87012-83-3
ISSN
2336-5781
e-ISSN
—
Number of pages
8
Pages from-to
104-111
Publisher name
Ústav termomechaniky AV ČR, v. v. i.
Place of publication
Praha
Event location
Prague
Event date
Feb 22, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001235670200015