All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Molecular simulations of transport properties of polar hydrofluoroethers: Force field development, fractional Stokes-Einstein and free volume relations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00574386" target="_blank" >RIV/61388998:_____/23:00574386 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0167732223016525?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167732223016525?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.molliq.2023.122847" target="_blank" >10.1016/j.molliq.2023.122847</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Molecular simulations of transport properties of polar hydrofluoroethers: Force field development, fractional Stokes-Einstein and free volume relations

  • Original language description

    Hydrofluoroethers (HFEs) having simultaneously hydrocarbon (HC) and fluorocarbon (FC) moieties connected through ether oxygen are polar chain molecules with dielectric properties, which makes them a good heat transfer medium, e.g., for cooling of electronics or magnetic devices. In this work, we report, validate, and test high level-ab initio derived force fields and we use partial charges fitted to the electrostatic potential surface (EPS) to reproduce the dipole moments. Computer simulations were performed over a wide range of temperatures and densities to calculate the transport coefficients in the condensed-phase and comparisons were made against available experimental data for five selected molecules, namely HFE-7000, HFE-7100, HFE −7200, HFE −7300, and HFE −7500. Furthermore, structural properties and enthalpy of vaporization were obtained from molecular simulations. Cohen and Turnbull formula for the translational self-diffusion coefficient was tested in the free-volume cast, which itself was correlated against the isothermal compressibility, which can explain the phenomenon of transport properties in liquids, D∝exp-γ/Vf/V∗. The fractional Stokes-Einstein relation was also tested to scale the self-diffusion coefficient vs viscosity in the form of (DT−1) ∝ (1/η)s, with s ranging between ≈ 0.89 and 0.92 for the five molecules in the reduced density range of ρσ3 = 0.56 to 0.75. Finally, the non-equilibrium molecular dynamics (NEMD) simulations of thermal conductivity was found to outperform the equilibrium Green-Kubo approach, but both with comparable accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/GA22-03380S" target="_blank" >GA22-03380S: Aqueous mixtures with salts under extreme conditions – accurate experiments, molecular simulations and modeling</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Molecular Liquids

  • ISSN

    0167-7322

  • e-ISSN

    1873-3166

  • Volume of the periodical

    389

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    122847

  • UT code for WoS article

    001088428600001

  • EID of the result in the Scopus database

    2-s2.0-85168408146