All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Complementary Methods for the Assessment of the Porosity of Laser Additive-Manufactured Titanium Alloy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00577395" target="_blank" >RIV/61388998:_____/23:00577395 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/16/19/6383" target="_blank" >https://www.mdpi.com/1996-1944/16/19/6383</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma16196383" target="_blank" >10.3390/ma16196383</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Complementary Methods for the Assessment of the Porosity of Laser Additive-Manufactured Titanium Alloy

  • Original language description

    The method of making parts through additive manufacturing (AM) is becoming more and more widespread due to the possibility of the direct manufacturing of components with complex geometries. However, the technology's capacity is limited by the appearance of micro-cracks/discontinuities during the layer-by-layer thermal process. The ultrasonic (US) method is often applied to detect and estimate the location and size of discontinuities in the metallic parts obtained by AM as well as to identify local deterioration in structures. The Ti6Al4V (Ti64) alloy prepared by AM needed to acquire a high-quality densification if remarkable mechanical properties were to be pursued. Ultrasonic instruments employ a different type of scanning for the studied samples, resulting in extremely detailed images comparable to X-rays. Automated non-destructive testing with special algorithms is widely used in the industry today. In general, this means that there is a trend towards automation and data sharing in various technological and production sectors, including the use of intelligent systems at the initial stage of production that can exclude defective construction materials, prevent the spread of defective products, and identify the causes of certain instances of damage. Placing the non-destructive testing on a completely new basis will create the possibility for a broader analysis of the primary data and thus will contribute to the improvement of both inspection reliability and consistency of the results. The paper aims to present the C-scan method, using ultrasonic images in amplitude or time-of-flight to emphasize discontinuities of Ti64 samples realized by laser powder-bed fusion (L-PBF) technology. The analysis of US maps offers the possibility of information correlation, mainly as to flaws in certain areas, as well as distribution of a specific flaw in the volume of the sample (flaws and pores). Final users can import C-scan results as ASCII files for further processing and comparison with other methods of analysis (e.g., non-linear elastic wave spectroscopy (NEWS), multi-frequency eddy current, and computer tomography), leading to specific results. The precision of the flight time measurement ensures the possibility of estimating the types of discontinuities, including volumetric ones, offering immediate results of the inspection. In situ monitoring allows the detection, characterization, and prediction of defects, which is suitable for robotics. Detailing the level of discontinuities at a certain location is extremely valuable for making maintenance and management decisions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

    1996-1944

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    19

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    6383

  • UT code for WoS article

    001082909000001

  • EID of the result in the Scopus database

    2-s2.0-85174049828