The Stefan problem in a thermomechanical context with fracture and fluid flow
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00579760" target="_blank" >RIV/61388998:_____/23:00579760 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:10474100
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/mma.8684" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mma.8684</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.8684" target="_blank" >10.1002/mma.8684</a>
Alternative languages
Result language
angličtina
Original language name
The Stefan problem in a thermomechanical context with fracture and fluid flow
Original language description
The classical Stefan problem, concerning mere heat-transfer during solid-liquid phase transition, is here enhanced towards mechanical effects. The Eulerian description at large displacements is used with convective and Zaremba-Jaumann corotational time derivatives, linearized by using the additive Green-Naghdi's decomposition in (objective) rates. In particular, the liquid phase is a viscoelastic fluid while creep and rupture of the solid phase is considered in the Jeffreys viscoelastic rheology exploiting the phase-field model and a concept of slightly (so-called semi) compressible materials. The L-1-theory for the heat equation is adopted for the Stefan problem relaxed by allowing for kinetic superheating/supercooling effects during the solid-liquid phase transition. A rigorous proof of existence of weak solutions is provided for an incomplete melting, employing a time discretization approximation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
1099-1476
Volume of the periodical
46
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
12217-12245
UT code for WoS article
000967855900001
EID of the result in the Scopus database
2-s2.0-85152357611