All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Algorithmic Feature Selection and Dimensionality Reduction in Signal Classification Tasks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F24%3A00603949" target="_blank" >RIV/61388998:_____/24:00603949 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-52965-8_15" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-52965-8_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-52965-8_15" target="_blank" >10.1007/978-3-031-52965-8_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Algorithmic Feature Selection and Dimensionality Reduction in Signal Classification Tasks

  • Original language description

    This paper presents a research endeavour addressing the recognition of acoustic emission signals, aiming to enhance their utilisation in non-destructive defectoscopy and machining process control. The classification task can be accomplished through two approaches: representing signals using a suitable attribute set, or directly passing the signals in their entirety to the classification algorithm. Our primary focus was on the meticulous selection of methods and tools for automating the extraction of a comprehensive set of features from the signals, followed by dimensionality reduction techniques. Subsequently, we conducted a comprehensive performance evaluation by comparing various classifiers applied to the low-dimensional projections. Lastly, we put the feature based classification approach to the test with direct signal classification employing convolutional neural networks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Springer Proceedings in Mathematics and Statistics

  • ISBN

    978-3-031-52964-1

  • ISSN

    2194-1009

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    187-193

  • Publisher name

    Springer

  • Place of publication

    CHAM

  • Event location

    Bělehrad

  • Event date

    Aug 23, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001263810800015