All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bound states in curved quantum layers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F01%3A00000737" target="_blank" >RIV/61389005:_____/01:00000737 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bound states in curved quantum layers

  • Original language description

    We consider a nonrelativistic quantum particle constrained to a curved layer of constant width built over a non-compact surface embedded in R-3. We Suppose that the latter is endowed with the geodesic polar coordinates and that the layer has the hard-wall boundary. Under the assumption that the surface curvatures vanish at infinity we find sufficient conditions which guarantee the existence of geometrically induced bound states.

  • Czech name

    Vázané stavy v zakřivených kvantových vrstvách

  • Czech description

    Uvažujeme nerelativistickou kvantovou částici vázanou v zakřivené vrstvě konstantní šířky generované nekompaktní plochou vnořenou do R3.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA1048801" target="_blank" >IAA1048801: Constraint quantum systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2001

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Mathematical Physics

  • ISSN

    0010-3616

  • e-ISSN

  • Volume of the periodical

    223

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    13-28

  • UT code for WoS article

  • EID of the result in the Scopus database