Bound states in point-interaction star graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F01%3A00000744" target="_blank" >RIV/61389005:_____/01:00000744 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bound states in point-interaction star graphs
Original language description
We discuss the discrete spectrum of the Hamiltonian describing a two-dimensional quantum particle interacting with an infinite family of point interactions. We suppose that the latter are arranged into a star-shaped graph with N arms and a fixed spacingbetween the interaction sites. We prove that the essential spectrum of this system is the same as that of the infinite straight 'polymer', but in addition there are isolated eigenvalues unless N = 2 and the graph is a straight line. We also show that thesystem has many strongly bound states if at least one of the angles between the star arms is small enough. Examples of eigenfunctions and eigenvalues are computed numerically.
Czech name
Vázané stavy v hvězdicovitých grafech bodových interakcí
Czech description
Diskutujeme diskrétní spektrum Hamiltoniánu popisujícího dvourozměrnou kvantovou částici interagující s nekonečnou množinou bodových interakcí. Předpokládáme, že tato je umístěna do hvězdicového grafu.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1048801" target="_blank" >IAA1048801: Constraint quantum systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics. A - Mathematical and General Physics
ISSN
0305-4470
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
38
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
7783-7794
UT code for WoS article
—
EID of the result in the Scopus database
—