Band gap of the Schrodinger operator with a strong delta-interaction on a periodic curve
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F01%3A00000746" target="_blank" >RIV/61389005:_____/01:00000746 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Band gap of the Schrodinger operator with a strong delta-interaction on a periodic curve
Original language description
In this paper we study the operator H-beta = -Delta - betadelta((.) - Gamma) in L-2(R-2), where Gamma is a smooth periodic curve in R-2. We obtain the asymptotic form of the band spectrum of H-beta as beta tends to infinity. Furthermore, we prove the existence of the band gap of sigma(H-beta) for sufficiently large beta >. 0. Finally, we also derive the spectral behaviour for beta - infinity in the case when Gamma is non-periodic and asymptotically straight.
Czech name
Lakuny Schrödingerova operátoru se silnou delta interakcí na periodické křivce
Czech description
V této práci studujeme operátor H.beta. = - .DELTA. - .beta. (. - .GAMMA.) v L2 (R2), kde .GAMMA. je hladká periodická křivka v R2. Získáme asymptotický tvar pásového spektra H.beta.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Henri Poincare
ISSN
1424-0637
e-ISSN
—
Volume of the periodical
2
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
1139-1158
UT code for WoS article
—
EID of the result in the Scopus database
—