All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Location of the nodal set for thin curved tubes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F08%3A00311171" target="_blank" >RIV/61389005:_____/08:00311171 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Location of the nodal set for thin curved tubes

  • Original language description

    The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of thefirst curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the "nodal-line conjecture" for a class of non-convex and possibly multiply connected domains.

  • Czech name

    Lokalisace nodalni mnoziny pro tenke krive trubice

  • Czech description

    Zabyvame se dirichletovskym laplacianem v krivych trubicich v limite scvrkavajiciho se prurezu. Ukazujeme, ze spektralni vlastnosti laplacianu lze v teto limite aproximovat jednodimensionalnim schroedingerovskym operatorem, jehoz potencial zavisi na krivosti referencni krivky trubice. Jako aplikaci dokazujeme Payneovu "hypotesu o nodalnich carach" pro takovouto tridu nekonvexnich a pripadne i vicesouvislych oblasti.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Indiana University Mathematics Journal

  • ISSN

    0022-2518

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    33

  • Pages from-to

  • UT code for WoS article

    000254468900010

  • EID of the result in the Scopus database