Location of the nodal set for thin curved tubes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F08%3A00311171" target="_blank" >RIV/61389005:_____/08:00311171 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Location of the nodal set for thin curved tubes
Original language description
The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of thefirst curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the "nodal-line conjecture" for a class of non-convex and possibly multiply connected domains.
Czech name
Lokalisace nodalni mnoziny pro tenke krive trubice
Czech description
Zabyvame se dirichletovskym laplacianem v krivych trubicich v limite scvrkavajiciho se prurezu. Ukazujeme, ze spektralni vlastnosti laplacianu lze v teto limite aproximovat jednodimensionalnim schroedingerovskym operatorem, jehoz potencial zavisi na krivosti referencni krivky trubice. Jako aplikaci dokazujeme Payneovu "hypotesu o nodalnich carach" pro takovouto tridu nekonvexnich a pripadne i vicesouvislych oblasti.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Indiana University Mathematics Journal
ISSN
0022-2518
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
—
UT code for WoS article
000254468900010
EID of the result in the Scopus database
—