Supersymmetric quasi-Hermitian Hamiltonians with point interactions on a loop
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F08%3A00322491" target="_blank" >RIV/61389005:_____/08:00322491 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/08:00178036
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Supersymmetric quasi-Hermitian Hamiltonians with point interactions on a loop
Original language description
We explore some aspects of PT-symmetric Hamiltonians with two point interactions. We determine classes of point interactions for which the Hamiltonians are supersymmetric. We prove that these Hamiltonians are quasi-Hermitian and find a very simple formula for the metric operator circle minus and its square root rho as well. Further, we present the quasi-Hermitian Hamiltonian (with one-point interaction) with a continuous spectrum.
Czech name
Supersymetrický kvazihermitovský hamiltonián s bodovými interakcemi na smyčče
Czech description
Jsou zkoumány nektere aspekty PT-symetrickych Hamiltonianu se dvema bodovymi interakcemi. Urcime tridy bodovych interakci, pro ktere jsou tyto Hamiltoniany supersymetricke. Ukazeme, ze tyto tridy tvori kvazi-hermitovske operatory a nalezneme vyjadreni metrickeho opreratoru i jeho odmocniny. Dale vysetrime kvazi-hermitovsky Hamiltonian s jednou bodovou interakci a spojitym spektrem.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BG - Nuclear, atomic and molecular physics, accelerators
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
24
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
—
UT code for WoS article
000256388200026
EID of the result in the Scopus database
—