Scattering theory using smeared non-Hermitian potentials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F09%3A00333961" target="_blank" >RIV/61389005:_____/09:00333961 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Scattering theory using smeared non-Hermitian potentials
Original language description
Local non-Hermitian potentials V(x)not equal V-*(x) can, sometimes, generate stable bound states Sigma(x) at real energies. Unfortunately, the idea [based on the use of a non-Dirac ad hoc metric Theta(x,x('))not equal delta(x-x(')) in Hilbert space] cannot directly be transferred to scattering due to the related loss of the asymptotic observability of x [cf. H. F. Jones, Phys. Rev. D 78, 065032 (2008)]. We argue that for smeared (typically, nonlocal or momentum-dependent) potentials V not equal V-daggerthis difficulty may be circumvented. A return to the usual (i.e., causal and unitary) quantum scattering scenario is then illustrated via an exactly solvable multiple-scattering example. In it, the anomalous loss of observability of the coordinate remains restricted to a small vicinity of the scattering centers.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D: Particles, Fields, Gravitation and Cosmology
ISSN
1550-7998
e-ISSN
—
Volume of the periodical
80
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
—
UT code for WoS article
000269641400092
EID of the result in the Scopus database
—