All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F09%3A00336848" target="_blank" >RIV/61389005:_____/09:00336848 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian

  • Original language description

    A discrete N-point Runge-Kutta version H-(N)(lambda) of one of the simplest non-Hermitian square-well Hamiltonians with real spectrum is studied. Its possible Hermitizations mediated by nontrivial (often called "non-Dirac") metrics Theta not equal I areconsidered as a source of nonequivalent standard probabilistic interpretations of this quantum model. A complete set of these alternative, multiparametric metrics Theta=Theta((N))((a,b,...))(lambda) defining all the eligible Hamiltonian-dependent representations of the physical Hilbert space of states is constructed, in closed form, for any coupling lambda is an element of(-1,1) and for any matrix dimension N.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    50

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

  • UT code for WoS article

    000273223900006

  • EID of the result in the Scopus database