Resonances in models of spin-dependent point interactions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F09%3A00338367" target="_blank" >RIV/61389005:_____/09:00338367 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/09:00210370
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Resonances in models of spin-dependent point interactions
Original language description
In dimension d = 1,2,3 we define a family of two-channel Hamiltonians obtained as point perturbations of the generator of the free decoupled dynamics. Within the family we choose two Hamiltonisns . (H) over cap $$ (0) and (H) over cap $$ (epsilon), giving arise respectively to the unperturbed and to the perturbed evolution. The Hamiltonian (H) over cap $$ (0) does not couple the channels and has an eigevalue embedded in the continuous spectrum. The Hamiltonian (H) over cap $$ (epsilon) is a small perturbation, in resolvent sense, of (H) over cap $$ (0) and exhibits a small coupling between the channels. We take advantage of the complete solvability of our model to prove with simple arguments that the embedded eigenvalue of (H) over cap $$ (0) shifts into a resonance for (H) over cap $$ (epsilon). In dimension three we analyzed details of the time behavior of the projection onto the region of the spectrum close to the resonance.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BG - Nuclear, atomic and molecular physics, accelerators
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
—
UT code for WoS article
000261520600006
EID of the result in the Scopus database
—