Krein Spaces in de Sitter Quantum Theories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F10%3A00343071" target="_blank" >RIV/61389005:_____/10:00343071 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Krein Spaces in de Sitter Quantum Theories
Original language description
Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1, 4) or Sp(2, 2) as an appealing substitute to the flat space-time Poincare relativity. Quantum elementary systems arethen associated to unitary irreducible representations of that simple Lie group. At the lowest limit of the discrete series lies a remarkable family of scalar representations involving Krein structures and related undecomposable representation cohomologywhich deserves to be thoroughly studied in view of quantization of the corresponding carrier fields. The purpose of this note is to present the mathematical material needed to examine the problem and to indicate possible extensions of an exemplary case,namely the so-called de Sitterian massless minimally coupled field, i.e. a scalar field in de Sitter space-time which does not couple to the Ricci curvature.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry, Integrability and Geometry: Methods and Applications
ISSN
1815-0659
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
-
Country of publishing house
UA - UKRAINE
Number of pages
23
Pages from-to
—
UT code for WoS article
000274771200006
EID of the result in the Scopus database
—