All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On eigenvalue asymptotics for strong delta-interactions supported by surfaces with boundaries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00458924" target="_blank" >RIV/61389005:_____/16:00458924 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/16:00307465

  • Result on the web

    <a href="http://dx.doi.org/10.3233/ASY-151341" target="_blank" >http://dx.doi.org/10.3233/ASY-151341</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/ASY-151341" target="_blank" >10.3233/ASY-151341</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On eigenvalue asymptotics for strong delta-interactions supported by surfaces with boundaries

  • Original language description

    Let S subset of R-3 be a C-4-smooth relatively compact orientable surface with a sufficiently regular boundary. For beta is an element of R+, let E-j(beta) denote the jth negative eigenvalue of the operator associated with the quadratic form nH-1(R-3) (sic) u (sic) integral integral integral(R3) vertical bar del u vertical bar(2) dx - beta integral integral(s) vertical bar u vertical bar(2) d sigma where sigma is the two-dimensional Hausdorff measure on S. We show that for each fixed j one has the asymptotic expansion E-j(beta) = -beta(2)/4 + mu(D)(j) + o(1) as beta -> +infinity where mu(D)(j) is the jth eigenvalue of the operator -Delta s +K - M-2 on L-2 (S), in which K and M are the Gauss and mean curvatures, respectively, and As is the Laplace Beltrami operator with the Dirichlet condition at the boundary of S. If, in addition, the boundary of S is C-2-smooth, then the remainder estimate can be improved to O(beta(-1) log beta).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Asymptotic Analysis

  • ISSN

    0921-7134

  • e-ISSN

  • Volume of the periodical

    97

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    25

  • Pages from-to

    1-25

  • UT code for WoS article

    000372741100001

  • EID of the result in the Scopus database

    2-s2.0-84960962661