Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato's Exceptional Points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00461197" target="_blank" >RIV/61389005:_____/16:00461197 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3390/sym8060052" target="_blank" >http://dx.doi.org/10.3390/sym8060052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym8060052" target="_blank" >10.3390/sym8060052</a>
Alternative languages
Result language
angličtina
Original language name
Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato's Exceptional Points
Original language description
For a given operator D(t) of an observable in theoretical parity-time symmetric quantum physics (or for its evolution-generator analogues in the experimental gain-loss classical optics, etc.) the instant t(critical) of a spontaneous breakdown of the parity-time alias gain-loss symmetry should be given, in the rigorous language of mathematics, the Kato's name of an "exceptional point", t(critical) = t((EP)). In the majority of conventional applications the exceptional point (EP) values are not real. In our paper, we pay attention to several exactly tractable toy-model evolutions for which at least some of the values of t((EP)) become real. These values are interpreted as "instants of a catastrophe", be it classical or quantum. In the classical optical setting the discrete nature of our toy models might make them amenable to simulations. In the latter context the instant of Big Bang is mentioned as an illustrative sample of possible physical meaning of such an EP catastrophe in quantum cosmology.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA16-22945S" target="_blank" >GA16-22945S: Quantum Wheeler-DeWitt equation and its unitary evolution interpretation</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry-Basel
ISSN
2073-8994
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
—
UT code for WoS article
000378737600015
EID of the result in the Scopus database
2-s2.0-84975709191