All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Low- and high-energy spectroscopy of O-17 and F-17 within a microscopic multiphonon approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00474567" target="_blank" >RIV/61389005:_____/17:00474567 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/17:10368633

  • Result on the web

    <a href="http://dx.doi.org/10.1103/PhysRevC.95.034327" target="_blank" >http://dx.doi.org/10.1103/PhysRevC.95.034327</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevC.95.034327" target="_blank" >10.1103/PhysRevC.95.034327</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Low- and high-energy spectroscopy of O-17 and F-17 within a microscopic multiphonon approach

  • Original language description

    The extension of an equation of motion phonon method to odd nuclei is described step by step. Equations of motion are first constructed and solved to generate an orthonormal basis of correlated n-phonon states (n = 0,1,2,...), built of constituent Tamm-Dancoff phonons, describing the excitations of a doubly magic core. Analogous equations are then derived within a subspace spanned by a valence particle coupled to the n-phonon core states and solved iteratively to yield a basis of correlated orthonormal multiphonon particle-core states. The basis so constructed is used to solve the full eigenvalue problem for the odd system. The formalism does not rely on approximations but lends itself naturally to simplifying assumptions, as illustrated by its application to O-17 and F-17. Self-consistent calculations using a chiral Hamiltonian in a space encompassing up to three-phonon basis states generate spectra having a high level density, comparable to that observed experimentally. The spectroscopic properties are investigated at low energy through the calculation of moments, electromagnetic and beta-decay transition strengths, and at intermediate and high energy through the computation of the electric-dipole spectra and pygmy and giant dipole resonance cross sections. The analysis of the particle-phonon composition of the eigenfunctions contributes to clarify the mechanism of excitation of levels and resonances and gives unique insights into their nature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA13-07117S" target="_blank" >GA13-07117S: Statistical approaches to quantum many-body systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review C

  • ISSN

    2469-9985

  • e-ISSN

  • Volume of the periodical

    95

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000399144100001

  • EID of the result in the Scopus database

    2-s2.0-85016469125