All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quantum graphs with the Bethe-Sommerfeld property

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00480621" target="_blank" >RIV/61389005:_____/17:00480621 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/17:00319051

  • Result on the web

    <a href="http://dx.doi.org/10.17586/2220-8054-2017-8-3-305-309" target="_blank" >http://dx.doi.org/10.17586/2220-8054-2017-8-3-305-309</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17586/2220-8054-2017-8-3-305-309" target="_blank" >10.17586/2220-8054-2017-8-3-305-309</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quantum graphs with the Bethe-Sommerfeld property

  • Original language description

    In contrast to the usual quantum systems which have at most a finite number of open spectral gaps if they are periodic in more than one direction, periodic quantum graphs may have gaps arbitrarily high in the spectrum. This property of graph Hamiltonians, being generic in a sense, inspires the question about the existence of graphs with a finite and nonzero number of spectral gaps. We show that the answer depends on the vertex couplings together with commensurability of the graph edges. A finite and nonzero number of gaps is excluded for graphs with scale invariant couplings. On the other hand, we demonstrate that graphs featuring a finite nonzero number of gaps do exist, illustrating the claim on the example of a rectangular lattice with a suitably tuned delta-coupling at the vertices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanosystems: Physics, Chemistry, Mathematics

  • ISSN

    2220-8054

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    5

  • Pages from-to

    305-309

  • UT code for WoS article

    000412772400001

  • EID of the result in the Scopus database