Quantum graphs with the Bethe-Sommerfeld property
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00480621" target="_blank" >RIV/61389005:_____/17:00480621 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/17:00319051
Result on the web
<a href="http://dx.doi.org/10.17586/2220-8054-2017-8-3-305-309" target="_blank" >http://dx.doi.org/10.17586/2220-8054-2017-8-3-305-309</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17586/2220-8054-2017-8-3-305-309" target="_blank" >10.17586/2220-8054-2017-8-3-305-309</a>
Alternative languages
Result language
angličtina
Original language name
Quantum graphs with the Bethe-Sommerfeld property
Original language description
In contrast to the usual quantum systems which have at most a finite number of open spectral gaps if they are periodic in more than one direction, periodic quantum graphs may have gaps arbitrarily high in the spectrum. This property of graph Hamiltonians, being generic in a sense, inspires the question about the existence of graphs with a finite and nonzero number of spectral gaps. We show that the answer depends on the vertex couplings together with commensurability of the graph edges. A finite and nonzero number of gaps is excluded for graphs with scale invariant couplings. On the other hand, we demonstrate that graphs featuring a finite nonzero number of gaps do exist, illustrating the claim on the example of a rectangular lattice with a suitably tuned delta-coupling at the vertices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nanosystems: Physics, Chemistry, Mathematics
ISSN
2220-8054
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
3
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
5
Pages from-to
305-309
UT code for WoS article
000412772400001
EID of the result in the Scopus database
—