All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Linear and non-linear flow mode in Pb-Pb collisions at root sNN=2.76 TeV

Result description

The second and the third order anisotropic flow, V-2 and V-3, are mostly determined by the corresponding initial spatial anisotropy coefficients, epsilon(2) and epsilon(3), in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn(n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V-n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |eta| < 0.8 and the transverse momentum range 0.2 < p(T)< 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.

Keywords

ALICE collaborationheavy ion collisionsrelativistic nuclear collisions

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Linear and non-linear flow mode in Pb-Pb collisions at root sNN=2.76 TeV

  • Original language description

    The second and the third order anisotropic flow, V-2 and V-3, are mostly determined by the corresponding initial spatial anisotropy coefficients, epsilon(2) and epsilon(3), in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn(n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V-n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |eta| < 0.8 and the transverse momentum range 0.2 < p(T)< 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10304 - Nuclear physics

Result continuities

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physics Letters. B

  • ISSN

    0370-2693

  • e-ISSN

  • Volume of the periodical

    773

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    68-80

  • UT code for WoS article

    000413294200010

  • EID of the result in the Scopus database

    2-s2.0-85027722091

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Nuclear physics

Year of implementation

2017